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1 Basics of Shannon Entropy and Connection to Entropy
Rate

1.1 Basic inequalities for Shannon entropy

Definition 1.1. Let A be a finite set with p ∈ P (A), and let α ∼ p be an A-valued random
variable. Then

H(α) := −
∑
α∈A

P(α = a) logP(α = a)︸ ︷︷ ︸
p(a)

= H(p)

is the Shannon entropy of α (or of p).

The Shannon entropy quantifies how “uncertain” α is. We have seen that H(p) ≥ 0 and
is ≤ log |A|, with equalities achieved with a point mass and with the uniform distribution
on |A|, respectively.

Next consider random variables α, β with values in A,B. Regard (α, β) as a random
variable with values in A×B. The joint distribution is pα,β ∈ P (A×B). Then

H(α, β) = −
∑
a,b

pα,β(a, b) log pα,β(a, b)

= −
∑
a,b

pα,β(a, b) log

(
pα(a) pβ|α(b | a)︸ ︷︷ ︸

P(β=b|α=a)

)

= −
∑
a,b

pα,β(a, b) log pα(a)−
∑
a,b

pα(a)pβ|α(b | a) log pβ|α(b | a)

= −
∑
a

pα(a) log pα(a) +
∑
a

pα(a) ·H(pβ|α(· | a))

= H(α) +H(β | α),

where H(β | α) :=
∑

a pα(a) ·H(pβ|α(· | a)).
Here is the generalization of this fact:
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Theorem 1.1 (Chain rule).

H(α1, . . . , αm) = H(α1) +H(α2 | α1) +H(α3 | α1, α2) + · · ·+H(αm | α1, . . . , αm−1).

We also have the following property.

Lemma 1.1.
H(β | α) ≤ H(β),

and equality holds iff α, β are independent, in which case

H(α, β) ≤ H(α) +H(β)

Proof.

H(β | α) =
∑
a

pα(a)H(pβ|α(· | a)).

By the Law of Total Probability, for all b ∈ B,

pβ(b) =
∑
α

pα(a)pβ|α(b | a).

Since H is strictly concave, Jensen’s inequality gives that

H(β) = H(pβ) ≥
∑
α

pα(a)H(pβ|α(· | a)) = H(β | α).

Equality holds in Jensen’s inequality iff pβ|α(· | a) = pβ whenever pα(a) > 0, i.e. α, β are
independent.

Corollary 1.1.
H(γ | α, β) ≤ H(γ | β)

and similarly with more random variables. Equality holds iff α, γ are conditionally inde-
pendent given β.

Here is a corollary of the chain rule:

Corollary 1.2. Let A be a finite set, p ∈ P (A), and 0 ≤ ε < 1/2. Suppose A = B t C
with |B| ≤ |C| and p(C) ≤ ε. Then

H(p) ≤ H(ε, 1− ε) + (1− ε) log |B|+ ε log |C|.

Proof. Let α ∼ p, and let

β = 1B(α) =

{
1 α ∈ B
0 α ∈ C.
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So H(α) = H(α) +H(β | α) = H(α, β). Expanding via β first instead, we get

H(α) = H(α, β)

= H(β) +H(α | β)

= H(β) + P(β = 1)H(p(· | B)) + P(β = 0)H(p(· | C))

≤ H(ε, 1− ε) + p(B) · log |B|+ p(C) · log |C|
≤ H(ε, 1− ε) + (1− ε) log |B|+ ε log |C|.

Here is the last information-theoretic inequality we need.

Theorem 1.2 (Shearer’s inequality). Let α1, . . . , αm be valued in A1, . . . , Am, let S ⊆
P({1, . . . ,m}), and let k ≥ 1. Assume that every i ∈ {1, . . . ,m} is contained in ≥ k
members of S. Then

H(α1, . . . , αm) ≤ 1

k

∑
S∈S

H(αi : i ∈ S).

Proof. Here is the proof in the case m = 3 and S = {{1, 2}, {1, 3}, {2, 3}} (k = 2); the
argument generalizes well.

H(α1, α2) = H(α1) +H(α2 | α1)

H(α1, α3) = H(α1) + +H(α3 | α1)

H(α2, α3) = H(α2) +H(α3 | α2)

Adding together the columns, the first column is H(α1), the second column is ≥ 2H(α2 |
α1), and the third column is ≥ 2H(α3 | α1, α2). So we get

H(α1, α2) +H(α1, α3) +H(α2, α3) = 2[H(α1) +H(α2 | α1) +H(α3 | α1, α2)]

= 2H(α1, α2, α3).

1.2 Applying Shearer’s inequality to lattice models

Here is a corollary of Shearer’s inequality.

Corollary 1.3. Let W,B ⊆ Zd be finite with 0 < |A| <∞ and µ ∈ P (AB). Then

H(µ) ≤ 1

|W |
∑

v+W⊆B
H(µv+W ) +O

(
log |A| · |B| · diam(W )

min-side-length(B)

)
.

Proof. Let S0 = {v+W : v+W ⊆ B}, and define S1 = {(v+W )∩B : (v+W )∩B 6= ∅}.
Then S0 ⊆ S1, and S1 covers every element of B exactly |W |-many times. Apply Shearer’s
inequality to get

H(µ) ≤ 1

|W |
∑

(v+W )∩B∈S1

H(µ(v+W )∩B) =
1

|W |
∑
S0

H(µv+W ) + error.
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The number of terms put into the error is |S1 \ S0| = O( diam(W )·|B|
min-side-length(B)). Each of these

terms is ≤ log |AW | = |W | · log |A|.

Now return to shift-invariant measures µ ∈ P T (AZd
).

Lemma 1.2. The limit limB↑Zd
1
|B|H(µB) exists, and

lim
B↑Zd

1

|B|
H(µB) = inf

B

1

|B|
H(µβ).

Here is a proof using Shearer’s inequality:

Proof. Apply the previous corollary to a shift-invariant measure µ, and observe µv+W = µW
(up to fixing indexing). Then

1

|B|
H(µB) ≤ 1

|B|
∑

v+W⊆B

1

|W |
H(µW ) + o(1)

=
|{v : v +W ⊆ B}|

|B|
· 1

|W |
H(µW ) + o(1)

≤ 1

|W |
H(µW ) + o(1).

So in fact,

lim
B↑Zd

1

|B|
H(µβ) = inf

|W |<∞

1

|W |
H(µW ).

Definition 1.2. The quantity

h(µ) = lim
B↑Zd

1

|B|
H(µB) (µ ∈ P T (AZd

))

is called the entropy rate of µ.

The entropy rate satisfies
0 ≤ h(µ) ≤ H(µ{0}).

Theorem 1.3. s = h on P T (AZd
), and so {s > −∞} = {s ≥ 0} = P T (AZd

).
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