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1 Basics of Shannon Entropy and Connection to Entropy
Rate

1.1 Basic inequalities for Shannon entropy

Definition 1.1. Let A be a finite set with p € P(A), and let « ~ p be an A-valued random

variable. Then
=—) P(a=a)logP(a=a) = H(p)
acA

is the Shannon entropy of «a (or of p).

The Shannon entropy quantifies how “uncertain” « is. We have seen that H(p) > 0 and
is < log |A|, with equalities achieved with a point mass and with the uniform distribution
on |A|, respectively.

Next consider random variables «, f with values in A, B. Regard (o, 3) as a random
variable with values in A x B. The joint distribution is p, 3 € P(A x B). Then

H(a,p) = Zpag a,b)logpa g(a,b)

a,b
=~ pasla,b)log (pa(a) Palall | a))
ab N————

P(8=bla=a)

= _Zpaﬁ (a,b)log pa(a Zpoa pﬁ\a (bla )logp6|a(b | a)
= Zpa )log pa(a) + Zpoa pﬁ\a( | a))
ZH(Q)JFH(ﬁ | a),

where H(f | o) := 3., pala) - H(pgla(- | a)).
Here is the generalization of this fact:



Theorem 1.1 (Chain rule).
H(ay,...,om)=H(a1)+ H(ag | 1) + H(as | aq,a2) + -+ H(ou, | a1, .oy am—1).
We also have the following property.

Lemma 1.1.

H(B | a) < H(B),

and equality holds iff a, B are independent, in which case
H(a, B) < H(a) + H(B)
Proof.
H(B|a)= Zpa H(pgia(- | a)).

By the Law of Total Probability, for all b € B,
= pala)pga(b] a).
o
Since H is strictly concave, Jensen’s inequality gives that
H(B) = H(pg) >Zpa H(pgja(- | @) = H(B | a).
Equality holds in Jensen’s inequality iff pg| (- | a) = pg whenever p,(a) > 0, ie. a, 3 are

independent. O

Corollary 1.1.
H(y[a,B) <H(y|PB)

and similarly with more random variables. Equality holds iff o, are conditionally inde-
pendent given (.

Here is a corollary of the chain rule:

Corollary 1.2. Let A be a finite set, p € P(A), and 0 < e < 1/2. Suppose A = BUC
with |B] < |C| and p(C) < e. Then

H(p) < H(e,1—¢)+ (1 —¢)log|B| + log|C].

Proof. Let a ~ p, and let

1 B
ﬁzﬂB(a):{o zic



So H(a) = H(a) + H(B | @) = H(a, 5). Expanding via [ first instead, we get

a, 3)
p)+H(alp
)

H(e) = H(

( )

(8) +P(6=1)H(p(- | B)) + P(8 = 0)H(p(- | €))
(

(

£,1—)+p(B) - log | B| + p(C) - log |C

H
H
H
H + (1 —¢)log|B| +elog|C|. O

VANV

e,1—¢

)
)
Here is the last information-theoretic inequality we need.

Theorem 1.2 (Shearer’s inequality). Let ai,...,q, be valued in Ay, ..., Ay, let S C
P({1,...,m}), and let k > 1. Assume that every i € {1,...,m} is contained in > k
members of S. Then

H(o, ..., 0m ZH cieS).
SES

Proof. Here is the proof in the case m = 3 and § = {{1,2},{1,3},{2,3}} (k = 2); the
argument generalizes well.

H(aj,a0) = H(ay) + H(ag | )
H(al,ag) = H(al) + +H(Oé3 | 041)
H(ag,ag) = H(Oég) +H(Oé3 ‘ 042)

Adding together the columns, the first column is H(«aq), the second column is > 2H (ao |
aq), and the third column is > 2H (a3 | aq, a2). So we get

H(Ozl,ag) + H(al,ag) + H(Ozg,a3) = Q[H(Ozl) + H(Ozg | al) + H(Oé3 | al,ag)]
= 2H(041,042,043). ]

1.2 Applying Shearer’s inequality to lattice models
Here is a corollary of Shearer’s inequality.
Corollary 1.3. Let W, B C Z4 be finite with 0 < |A| < co and u € P(AB). Then

log |A] - |B| - diam(W)
min-side-length(B)

H(p) < i > H(uorw) +O<
v+WCB
Proof. Let Sp = {v+W :v+W C B}, and define §; = {(v+W)NB: (v+W)NB # &}.
Then Sy C Sy, and S; covers every element of B exactly |W|-many times. Apply Shearer’s
inequality to get
1
H(p) < Wi > H(peswins) = ZH (v+w) + error.
(

v+W)NBES |W|
1



The number of terms put into the error is |S; \ So| = O(#%). Each of these

terms is < log |AY| = |[W| - log |A]. O
Now return to shift-invariant measures p € PT(AZd).

Lemma 1.2. The limit limgyz4 ‘—é'H (up) exists, and

l 1
lim — =inf —H .
Here is a proof using Shearer’s inequality:

Proof. Apply the previous corollary to a shift-invariant measure p, and observe p,+w = pw
(up to fixing indexing). Then

1 1 1
13| H(up) < |U+;QB|W’H(MW)+O(1)

~ Hviv+WCBYH 1
| Bl W

H(pw) 4 o(1).

H(pw) + o(1)

1
Si
(W]
So in fact,
1 1
lim — inf —H . O
A, gy H e) = nf g H (o)

Definition 1.2. The quantity

is called the entropy rate of u.

The entropy rate satisfies
0 < h(p) < H(poy)-

Theorem 1.3. s =h on PT(AZd), and so {s > —oo} ={s >0} = PT(AZd).
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